Step 1: Recall the Formulas for Cross and Dot Products
The magnitude of the cross product is given by:
\[
| \vec{a} \times \vec{b} | = |\vec{a}| |\vec{b}| \sin \theta
\]
The magnitude of the dot product is:
\[
| \vec{a} \cdot \vec{b} | = |\vec{a}| |\vec{b}| \cos \theta
\]
Step 2: Relate the Two Magnitudes
We are asked to find the relationship between the magnitudes of the cross product and the dot product.
Dividing the cross product magnitude by the dot product magnitude, we get:
\[
\frac{| \vec{a} \times \vec{b} |}{| \vec{a} \cdot \vec{b} |} = \frac{|\vec{a}| |\vec{b}| \sin \theta}{|\vec{a}| |\vec{b}| \cos \theta} = \tan \theta
\]
Step 3: Conclusion
Thus, the correct answer is \( \tan \theta \).