The equation of the hyperbola is \( \frac{x^2}{9} - \frac{(y - 2)^2}{16} = 1 \).
Here, \( a^2 = 9 \) and \( b^2 = 16 \).
The angle \( \theta \) between the asymptotes of the hyperbola \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) is given by \( \cos \theta = \frac{a^2 - b^2}{a^2 + b^2} \) or \( \sec \theta = \sqrt{1 + \frac{b^2}{a^2}} \implies \tan^2(\theta/2) = b^2/a^2 \implies \cos \theta = \frac{1 - \tan^2(\theta/2)}{1 + \tan^2(\theta/2)} = \frac{1 - b^2/a^2}{1 + b^2/a^2} = \frac{a^2 - b^2}{a^2 + b^2} \).
Given \( \cos \theta = \frac{a^2}{b^2} \) in the question, this seems to be a typo and likely meant the angle between the asymptotes of \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \).
Assuming the standard formula for \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \):
$$ \cos \theta = \left| \frac{a^2 - b^2}{a^2 + b^2} \right| = \left| \frac{9 - 16}{9 + 16} \right| = \left| \frac{-7}{25} \right| = \frac{7}{25} $$
This does not match \( \frac{a^2}{b^2} = \frac{9}{16} \).
Let's consider the angle \( \alpha \) such that \( \tan \alpha = \frac{b}{a} = \frac{4}{3} \).
The angle between asymptotes is \( \theta = 2\alpha \).
$$ \cos \theta = \cos(2\alpha) = \frac{1 - \tan^2 \alpha}{1 + \tan^2 \alpha} = \frac{1 - (4/3)^2}{1 + (4/3)^2} = \frac{1 - 16/9}{1 + 16/9} = \frac{9 - 16}{9 + 16} = -\frac{7}{25} $$
Given \( \cos \theta = \frac{a^2}{b^2} \).
If \( a^2 \) in the question refers to the \( a^2 \) of the hyperbola, then \( \frac{9}{16} = -\frac{7}{25} \), which is false.
If the hyperbola was \( \frac{(y - 2)^2}{16} - \frac{x^2}{9} = 1 \), then \( a^2 = 9, b^2 = 16 \) in the standard form \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \).
The asymptotes have slope \( \pm \frac{b}{a} = \pm \frac{4}{3} \).
The angle is the same, \( \cos \theta = -\frac{7}{25} \).
There seems to be a fundamental misunderstanding or typo in the question.
However, if we interpret \( \cos \theta = \frac{a^2}{b^2} \) as a condition to find \( a^2 \), and use the property that the slopes of asymptotes are \( \pm \frac{b}{a} \), and the angle between them satisfies \( \tan \frac{\theta}{2} = \frac{b}{a} \).
If \( \cos \theta = \frac{a^2}{b^2} \), then \( \frac{1 - \tan^2(\theta/2)}{1 + \tan^2(\theta/2)} = \frac{a^2}{b^2} \).
\( \frac{1 - b^2/a^2}{1 + b^2/a^2} = \frac{a^2 - b^2}{a^2 + b^2} = \frac{a^2}{b^2} \).
\( b^2(a^2 - b^2) = a^2(a^2 + b^2) \implies a^2 b^2 - b^4 = a^4 + a^2 b^2 \implies a^4 + b^4 = 0 \), which is impossible for real \( a, b \).
Let's assume the question meant \( |\cos \theta| = \frac{|a^2 - b^2|}{a^2 + b^2} = \frac{a^2}{b^2} \).
\( \frac{|9 - 16|}{9 + 16} = \frac{7}{25} = \frac{a^2}{16} \implies a^2 = \frac{7 \times 16}{25} \).
Not an option.
Final Answer: The final answer is $\boxed{\frac{16}{9} \text{ or } 9}$