$-3 < k < 3$
$k \neq 0$
To determine when the system has a unique solution, the determinant of the coefficient matrix must be nonzero. The coefficient matrix for the system is:
\[A=\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & k \end{bmatrix}\]
The determinant of A is:
\[\det(A)=\begin{vmatrix} 1 & 1 & 1 \\ 2 & 1 & -1 \\ 3 & 2 & k \end{vmatrix}\]
Expanding along the first row:
\[\det(A)=1 \cdot \begin{vmatrix} 1 & -1 \\ 2 & k \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & -1 \\ 3 & k \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix}\]
Calculate each minor:
\[\begin{vmatrix} 1 & -1 \\ 2 & k \end{vmatrix} = (1)(k) - (2)(-1) = k + 2\]
\[\begin{vmatrix} 2 & -1 \\ 3 & k \end{vmatrix} = (2)(k) - (3)(-1) = 2k + 3,\]
\[\begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = (2)(2) - (3)(1) = 4 - 3 = 1.\]
Substitute these values back:
\[\det(A) = 1(k + 2) - 1(2k + 3) + 1(1).\]
Simplify:
\[\det(A) = k + 2 - 2k - 3 + 1 = -k.\]
For the system to have a unique solution, \(\det(A) \neq 0\). Thus:
\[-k \neq 0 \implies k \neq 0.\]
Final Answer:
\[k \neq 0.\]