If the system of linear equations \[ x + ky + 3z = 0, \quad 3x + ky - 2z = 0, \quad 2x + 4y - 3z = 0 \] has a non-zero solution \( (x, y, z) \), then \( \frac{xz}{y^2} \) is equal to:
-10
10
For the system of equations to have a non-zero solution, the determinant of the coefficient matrix must be zero. The given system of equations is:
\[ \begin{bmatrix} 1 & k & 3 \\ 3 & k & -2 \\ 2 & 4 & -3 \end{bmatrix} \]Step 1: Compute the determinant of the matrix.
\[ \text{Determinant} = \begin{vmatrix} 1 & k & 3 \\ 3 & k & -2 \\ 2 & 4 & -3 \end{vmatrix} \]Expanding along the first row:
\[ = 1 \begin{vmatrix} k & -2 \\ 4 & -3 \end{vmatrix} - k \begin{vmatrix} 3 & -2 \\ 2 & -3 \end{vmatrix} + 3 \begin{vmatrix} 3 & k \\ 2 & 4 \end{vmatrix} \]Computing the 2×2 determinants:
\[ \begin{vmatrix} k & -2 \\ 4 & -3 \end{vmatrix} = k(-3) - (-2)(4) = -3k + 8 \] \[ \begin{vmatrix} 3 & -2 \\ 2 & -3 \end{vmatrix} = 3(-3) - (-2)(2) = -9 + 4 = -5 \] \[ \begin{vmatrix} 3 & k \\ 2 & 4 \end{vmatrix} = 3(4) - k(2) = 12 - 2k \]Substituting back:
\[ \text{Determinant} = 1(-3k + 8) - k(-5) + 3(12 - 2k) \] \[ = -3k + 8 + 5k + 36 - 6k \] \[ = -4k + 44 \]Step 2: Solve for \( k \).
\[ -4k + 44 = 0 \quad \Rightarrow \quad k = 11 \]Substituting \( k = 11 \) into the equations, we get:
\[ x + 11y + 3z = 0, \quad 3x + 11y - 2z = 0, \quad 2x + 4y - 3z = 0 \]Solving this system, we find:
\[ x = 10, \quad y = 1, \quad z = -1 \]Step 3: Compute \( \frac{xz}{y^2} \).
\[ \frac{xz}{y^2} = \frac{10 \times (-1)}{1^2} = -10 \]Final Answer: \( \mathbf{-10} \).