Step 1: Write the system in matrix form:
\[
\beginbmatrix
1 & 2a & a
1 & 3b & b
1 & 4c & c
\endbmatrix
\beginbmatrix
x
y
z
\endbmatrix
=
\beginbmatrix
0
0
0
\endbmatrix
\]
Step 2: For a non-trivial (non-zero) solution, the determinant of the coefficient matrix must be zero:
\[
\beginvmatrix
1 & 2a & a
1 & 3b & b
1 & 4c & c
\endvmatrix = 0
\]
Step 3: Evaluate determinant:
Expanding along the first column:
\[
1 \times \beginvmatrix 3b & b
4c & c \endvmatrix
- 1 \times \beginvmatrix 2a & a
4c & c \endvmatrix
+ 1 \times \beginvmatrix 2a & a
3b & b \endvmatrix = 0
\]
Step 4: Calculate each:
First: $(3b)(c) - (b)(4c) = 3bc - 4bc = -bc$
Second: $(2a)(c) - (a)(4c) = 2ac - 4ac = -2ac$
Third: $(2a)(b) - (a)(3b) = 2ab - 3ab = -ab$
Step 5: Substituting into expansion:
\[
(-bc) - (-2ac) + (-ab) = -bc + 2ac - ab = 0
\]
Step 6: Rearrange:
\[
2ac - ab - bc = 0
\]
Divide through by $abc$:
\[
\frac2b - \frac1c - \frac1a = 0
\]
Step 7: Rearranged:
\[
\frac1a , \frac1b , \frac1c \ \textare in A.P.
\]
Which means $a, b, c$ are in $\mathbfH.P.$ (Harmonic Progression).