Step 1: Use root properties of a quadratic equation.
Let \( \alpha, \beta \) be roots. Then:
\[
\alpha + \beta = -\frac{b}{a}, \quad \alpha \beta = \frac{c}{a}
\]
Step 2: Use given condition.
\[
\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}
\Rightarrow -\frac{b}{a} = \frac{\beta^2 + \alpha^2}{\alpha^2 \beta^2}
\]
Now,
\[
\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(\frac{b^2}{a^2} - \frac{2c}{a} \right), \quad \alpha^2 \beta^2 = \left(\frac{c}{a} \right)^2
\]
Substitute:
\[
-\frac{b}{a} = \frac{b^2 - 2ac}{a^2} \cdot \frac{a^2}{c^2} = \frac{b^2 - 2ac}{c^2}
\Rightarrow \frac{b}{a} = -\frac{b^2 - 2ac}{c^2}
\]
This relation leads to:
\[
\frac{1}{\frac{a}{c}}, \frac{1}{\frac{b}{a}}, \frac{1}{\frac{c}{b}} \text{ are in A.P.}
\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b} \text{ are in H.P.}
\]