Let the roots of the equation \( x^3 - ax^2 + bx - c = 0 \) be \( \alpha, \beta, \gamma \). According to Vieta's formulas:
\[
\alpha + \beta + \gamma = a, \quad \alpha\beta + \beta\gamma + \gamma\alpha = b, \quad \alpha\beta\gamma = c
\]
We are given that the sum of the cubes of the roots is zero:
\[
\alpha^3 + \beta^3 + \gamma^3 = 0
\]
Using the identity:
\[
\alpha^3 + \beta^3 + \gamma^3 = (\alpha + \beta + \gamma) \left( (\alpha + \beta + \gamma)^2 - 3(\alpha\beta + \beta\gamma + \gamma\alpha) \right) - 3\alpha\beta\gamma
\]
Substitute the known values from Vieta's formulas:
\[
0 = a \left( a^2 - 3b \right) - 3c
\]
Thus, we have:
\[
a(a^2 - 3b) = 3c
\]
This simplifies to:
\[
a^3 - 3ab = 3c
\]
Therefore, \( a^3 + 3c = 3ab \).