To find the resistance \( R \) of a wire, we use the formula:
\[ R = \rho \frac{L}{A} \]
where \( \rho \) is the specific resistance of the material, \( L \) is the length of the wire, and \( A \) is the cross-sectional area.
Given:
Insert these values into the formula:
\[ R = 10^{-8} \times \frac{2}{1 \times 10^{-6}} \]
Simplify the expression:
\[ R = 10^{-8} \times 2 \times 10^6 \]
\[ R = 2 \times 10^{-2} \, \Omega \]
Thus, the resistance of the wire is \(2 \times 10^{-2} \, \Omega\).
We use the formula for resistance:
\[ R = \rho \cdot \frac{l}{A} \]
Given:
Substitute the values:
\[ R = 10^{-8} \cdot \frac{2}{1 \times 10^{-6}} = 10^{-8} \cdot 2 \times 10^6 = 2 \times 10^{-2} \, \Omega \]
Final Answer: \(2 \times 10^{-2} \, \Omega\)