Step 1: Condition for positive slopes
For equation
\[
x^2 + 2hxy + 6y^2 = 0,
\]
slopes \(m\) satisfy
\[
m = \frac{-2h \pm \sqrt{4h^2 - 24}}{2 \times 6} = \frac{-h \pm \sqrt{h^2 - 6}}{6}
\]
Both slopes positive implies \(h<0\) and discriminant positive.
Step 2: Use formula for angle between lines
\[
\tan \theta = \left|\frac{2 \sqrt{h^2 - ab}}{a + b}\right|, \quad a=1, b=6
\]
Given \(\theta = \tan^{-1} \left(\frac{1}{7}\right)\),
\[
\frac{1}{7} = \frac{2 \sqrt{h^2 - 6}}{1 + 6} = \frac{2 \sqrt{h^2 - 6}}{7}
\]
\[
1 = 2 \sqrt{h^2 - 6}
\]
\[
\sqrt{h^2 - 6} = \frac{1}{2} \implies h^2 - 6 = \frac{1}{4} \implies h^2 = \frac{25}{4} \implies h = -\frac{5}{2}
\]
Step 3: Product of perpendiculars
From point \((1,0)\),
\[
p_1 p_2 = \frac{|c_1 c_2|}{\sqrt{a^2 + b^2} \times \sqrt{a^2 + b^2}} \quad \text{(For pair of lines \(L_1 L_2=0\))}
\]
Since no constant terms,
\[
p_1 p_2 = \frac{|(a \times 1 + b \times 0 + c_1)(a \times 1 + b \times 0 + c_2)|}{\text{coefficients norm}} = \text{Evaluate carefully with constants}
\]
Detailed algebra yields,
\[
p_1 p_2 = \frac{1}{5 \sqrt{2}}
\]