>
Exams
>
Mathematics
>
Quadratic Equations
>
if the roots of the quadratic equation x 2 p 1 x p
Question:
If the roots of the quadratic equation \(x^2-(p+1)x+p=0\) are equal, then \(p\) is:
Show Hint
Equal roots ⇒ discriminant zero.
VITEEE - 2025
VITEEE
Updated On:
Jan 5, 2026
\(1/4\)
\(-1/4\)
1
\(-1\)
Hide Solution
Verified By Collegedunia
The Correct Option is
C
Solution and Explanation
Equal roots ⇒ discriminant \(=0\): \[ (p+1)^2-4p=0 \Rightarrow (p-1)^2=0 \Rightarrow p=1 \]
Download Solution in PDF
Was this answer helpful?
0
0
Top Questions on Quadratic Equations
Let $\alpha, \beta$ be the roots of the quadratic equation \[ 12x^2 - 20x + 3\lambda = 0,\ \lambda \in \mathbb{Z}. \] If \[ \frac{1}{2} \le |\beta-\alpha| \le \frac{3}{2}, \] then the sum of all possible values of $\lambda$ is
JEE Main - 2026
Mathematics
Quadratic Equations
View Solution
Let the mean and variance of 8 numbers -10, -7, -1, x, y, 9, 2, 16 be \( 2 \) and \( \frac{293}{4} \), respectively. Then the mean of 4 numbers x, y, x+y+1, |x-y| is:
JEE Main - 2026
Mathematics
Quadratic Equations
View Solution
If \( \alpha,\beta \) where \( \alpha<\beta \), are the roots of the equation \[ \lambda x^2-(\lambda+3)x+3=0 \] such that \[ \frac{1}{\alpha}-\frac{1}{\beta}=\frac{1}{3}, \] then the sum of all possible values of \( \lambda \) is:
JEE Main - 2026
Mathematics
Quadratic Equations
View Solution
Let $\alpha$ and $\beta$ be the roots of the equation $x^2 + 2ax + (3a + 10) = 0$ such that $\alpha<1<\beta$. Then the set of all possible values of $a$ is :
JEE Main - 2026
Mathematics
Quadratic Equations
View Solution
The sum of all the roots of the equation \((x-1)^2 - 5|x-1| + 6 = 0\), is:
JEE Main - 2026
Mathematics
Quadratic Equations
View Solution
View More Questions
Questions Asked in VITEEE exam
Find the value of \( x \) in the following equation:
\[ \frac{2}{x} + \frac{3}{x + 1} = 1 \]
VITEEE - 2025
Algebra
View Solution
How many numbers between 0 and 9 look the same when observed in a mirror?
VITEEE - 2025
Odd one Out
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Odd one Out
View Solution
In a code language, 'TIGER' is written as 'JUISF'. How will 'EQUAL' be written in that language?
VITEEE - 2025
Data Interpretation
View Solution
TUV : VYB :: PRA : ?
VITEEE - 2025
Odd one Out
View Solution
View More Questions