Let \( \alpha, \beta; \, \alpha > \beta \), be the roots of the equation \[ x^2 - \sqrt{2}x - \sqrt{3} = 0. \] Let \( P_n = \alpha^n - \beta^n, \, n \in \mathbb{N} \). Then \[ \left( 11\sqrt{3} - 10\sqrt{2} \right) P_{10} + \left( 11\sqrt{2} + 10 \right) P_{11} - 11P_{12} \] is equal to: