Step 1: Recall the relation.
For Rb-Sr dating, the slope of the isochron \(m\) is:
\[
m = e^{\lambda t} - 1
\]
where \(\lambda\) is the decay constant and \(t\) is the age.
Step 2: Substitute known values.
\(\lambda = 1.42 \times 10^{-11}\ \text{year}^{-1}, \quad m = 0.0265.\)
So,
\[
0.0265 = e^{\lambda t} - 1 \quad \Rightarrow \quad e^{\lambda t} = 1.0265
\]
Step 3: Take natural log.
\[
\lambda t = \ln(1.0265)
\]
\[
\ln(1.0265) \approx 0.02615
\]
Step 4: Solve for \(t\).
\[
t = \frac{0.02615}{1.42 \times 10^{-11}}
\]
\[
t \approx 1.8415 \times 10^{9}\ \text{years}
\]
\[
t \approx 1841\ \text{million years}
\]
Rounding to integer:
\[
\boxed{1840\ \text{million years}}
\]