If the radical center of the given three circles x2 + y2 = 1, x2 + y2 -2x - 3 =0 and x2 + y2 -2y - 3 = 0 is C(α,β) and r is the sum of the radii of the given circles, then the circle with C(α,β) as center and r as radius is
(x - 1)2 + (y - 1)2 = 2
(x - 1)2 + (y + 1)2 =4
(x - 2)2 + (y - 2)2 = 25
(x + 1)2 + (y + 1)2 = 25
The correct option is: (D) (x + 1)2 + (y + 1)2 = 25
The ratio of the radii of two solid spheres of same mass in 2:3. The ratio of the moments of inertia of the spheres about their diameters is:
If (-c, c) is the set of all values of x for which the expansion is (7 - 5x)-2/3 is valid, then 5c + 7 =
The general solution of the differential equation (x2 + 2)dy +2xydx = ex(x2+2)dx is
If i=√-1 then
\[Arg\left[ \frac{(1+i)^{2025}}{1+i^{2022}} \right] =\]If nCr denotes the number of combinations of n distinct things taken r at a time, then the domain of the function g (x)= (16-x)C(2x-1) is