Step 1: Use Heisenberg's Uncertainty Principle \[ \Delta x \cdot \Delta p \geq \frac{h}{4\pi} \] where:
- \( \Delta x = 0.002 \) nm \( = 2 \times 10^{-12} \) m, - \( h = 6.626 \times 10^{-34} \) Js.
Step 2: Compute \( \Delta p \) \[ \Delta p = \frac{h}{4\pi \Delta x} \] \[ = \frac{6.626 \times 10^{-34}}{4\pi \times 2 \times 10^{-12}} \] \[ = 2.637 \times 10^{-23} \text{ kg ms}^{-1} \]
Match the LIST-I with LIST-II
LIST-I (Energy of a particle in a box of length L) | LIST-II (Degeneracy of the states) | ||
---|---|---|---|
A. | \( \frac{14h^2}{8mL^2} \) | I. | 1 |
B. | \( \frac{11h^2}{8mL^2} \) | II. | 3 |
C. | \( \frac{3h^2}{8mL^2} \) | III. | 6 |
Choose the correct answer from the options given below:
The mass of particle X is four times the mass of particle Y. The velocity of particle Y is four times the velocity of X. The ratio of de Broglie wavelengths of X and Y is: