Step 1: Use Heisenberg's Uncertainty Principle \[ \Delta x \cdot \Delta p \geq \frac{h}{4\pi} \] where:
- \( \Delta x = 0.002 \) nm \( = 2 \times 10^{-12} \) m, - \( h = 6.626 \times 10^{-34} \) Js.
Step 2: Compute \( \Delta p \) \[ \Delta p = \frac{h}{4\pi \Delta x} \] \[ = \frac{6.626 \times 10^{-34}}{4\pi \times 2 \times 10^{-12}} \] \[ = 2.637 \times 10^{-23} \text{ kg ms}^{-1} \]
Two concentric thin circular rings of radii 50 cm and 40 cm each, carry a current of 3.5 A in opposite directions. If the two rings are coplanar, the net magnetic field due to the two rings at their centre is: