In a parallelogram, the diagonals bisect each other.
So, the midpoint of diagonal \(AC\) must equal the midpoint of diagonal \(BD\).
Coordinates of \(A = (6, 1)\), \(C = (9, 4)\)
Midpoint of \(AC\) is:
\[
\left(\frac{6 + 9}{2}, \frac{1 + 4}{2}\right) = \left(\frac{15}{2}, \frac{5}{2}\right)
\]
Let \(B = (p, 2)\), \(D = (7, q)\)
Midpoint of \(BD\) is:
\[
\left(\frac{p + 7}{2}, \frac{2 + q}{2}\right)
\]
Equating midpoints:
\[
\frac{p + 7}{2} = \frac{15}{2} \Rightarrow p = 8 \\
\frac{2 + q}{2} = \frac{5}{2} \Rightarrow q = 3
\]
Therefore, \(p = 8\), \(q = 3\)
Now to check if it's a rectangle, check if adjacent sides are perpendicular (dot product = 0).
Vectors:
\[
\vec{AB} = B - A = (8 - 6, 2 - 1) = (2, 1) \\
\vec{BC} = C - B = (9 - 8, 4 - 2) = (1, 2)
\]
Dot product:
\[
\vec{AB} \cdot \vec{BC} = 2 \cdot 1 + 1 \cdot 2 = 2 + 2 = 4 \neq 0
\]
Hence, ABCD is not a rectangle.