The plane intersects the x-axis when \( y = 0 \) and \( z = 0 \):
\( 56x = 2016 \implies x = \frac{2016}{56} = 36 \).
So, \( A = (36, 0, 0) \).
The plane intersects the y-axis when \( x = 0 \) and \( z = 0 \):
\( 4y = 2016 \implies y = \frac{2016}{4} = 504 \).
So, \( B = (0, 504, 0) \).
The plane intersects the z-axis when \( x = 0 \) and \( y = 0 \):
\( 9z = 2016 \implies z = \frac{2016}{9} = 224 \).
So, \( C = (0, 0, 224) \).
The centroid of the triangle \( ABC \) with vertices \( (x_1, y_1, z_1), (x_2, y_2, z_2), (x_3, y_3, z_3) \) is given by \( \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}, \frac{z_1 + z_2 + z_3}{3} \right) \).
Centroid of \( \triangle ABC = \left( \frac{36 + 0 + 0}{3}, \frac{0 + 504 + 0}{3}, \frac{0 + 0 + 224}{3} \right) \)
Centroid \( = \left( \frac{36}{3}, \frac{504}{3}, \frac{224}{3} \right) = \left( 12, 168, \frac{224}{3} \right) \).