It is known that the coordinates of the centroid of the triangle, whose vertices are (x1, y1, z1), (x2, y2, z2) and (x, y, z), are (\(\frac{x_1+x_2+x_3}{3}\), \(\frac{y_1+y_2+y_3}{3}\), \(\frac{z_1+z_2+z_3}{3}\)).
Therefore, the coordinates of the centroid of
PQR = (\(\frac{2a-4+8}{3}\), \(\frac{2+3b+14}{3}\), \(\frac{6-10+2c}{3}\)) = (\(\frac{2a+4}{3}\), \(\frac{3b+16}{3}\), \(\frac{2c-4}{3}\))
It is given that the origin is the centroid of PQR.
∴ (0,0,0)= (\(\frac{2a+4}{3},\frac{3b+16}{3},\frac{2c-4}{3}\))
⇒ \(\frac{2a+4}{3}=0,\) and \(\frac{2c-4}{3}=0\)
a=-2, b= \(-\frac{16}{3}\) and c = 2
Thus, the respective values of a, b, and c are -2, \(-\frac{16}{3}\), and 2.