The Trapezoidal rule for numerical integration with two subintervals is given by:
\[
T = \frac{b - a}{2} \left( f(a) + 2 f\left( \frac{a+b}{2} \right) + f(b) \right)
\]
For the given integral \( \int_0^4 2^\alpha x \, dx \), we need to compute the value of \( \alpha \). The numerical approximation given is 9. Using the Trapezoidal rule, we have:
\[
T = \frac{4 - 0}{2} \left( f(0) + 2 f(2) + f(4) \right) = 9
\]
The function \( f(x) = 2^\alpha x \). Evaluating at \( x = 0 \), \( x = 2 \), and \( x = 4 \), we get:
\[
f(0) = 0, f(2) = 2^\alpha \times 2, f(4) = 2^\alpha \times 4
\]
Substituting into the Trapezoidal rule formula:
\[
9 = 2 \left( 0 + 2 \times 2^\alpha \times 2 + 2^\alpha \times 4 \right)
\]
Solving for \( \alpha \):
\[
9 = 2 \left( 4 \times 2^\alpha + 4 \times 2^\alpha \right) = 16 \times 2^\alpha
\]
\[
2^\alpha = 0.5
\]
Taking the logarithm:
\[
\alpha \log 2 = \log 0.5
\]
\[
\alpha = -1
\]
Thus, the value of \( \alpha \) is \( 0.5 \).