Given: \( 3y = 6x - 5x^3 \Rightarrow y = 2x - \frac{5}{3}x^3 \)
Differentiate:
\[
\frac{dy}{dx} = 2 - 5x^2
\Rightarrow \text{Slope of tangent at } x = a:\ m_T = 2 - 5a^2
\Rightarrow \text{Slope of normal } m_N = -\frac{1}{m_T} = \frac{-1}{2 - 5a^2}
\]
Let point \( P = (a, y(a)) \). Since the normal passes through the origin:
Using point-slope form:
\[
y - y_1 = m(x - x_1) \Rightarrow y - y(a) = \frac{-1}{2 - 5a^2}(x - a)
\]
Put \( x = 0, y = 0 \) as it passes through origin:
\[
0 - (2a - \frac{5}{3}a^3) = \frac{-1}{2 - 5a^2}(0 - a)
\Rightarrow -2a + \frac{5}{3}a^3 = \frac{a}{2 - 5a^2}
\]
Multiply both sides by \( 2 - 5a^2 \):
\[
(-2a + \frac{5}{3}a^3)(2 - 5a^2) = a
\]
Now try \( a = 1 \):
LHS: \( (-2 + \frac{5}{3})(2 - 5) = (-\frac{1}{3})(-3) = 1 = \text{RHS} \)
So, the positive integral abscissa is \( \boxed{1} \)