Step 1: Let the position vectors of the vertices $A$, $B$, and $C$ be $\vec{A}, \vec{B}, \vec{C}$.
Given midpoints:
\[
\frac{\vec{B}+\vec{C}}{2}=(2,1)\Rightarrow \vec{B}+\vec{C}=(4,2)\quad\cdots(1)
\]
\[
\frac{\vec{C}+\vec{A}}{2}=(-1,-2)\Rightarrow \vec{C}+\vec{A}=(-2,-4)\quad\cdots(2)
\]
\[
\frac{\vec{A}+\vec{B}}{2}=(3,3)\Rightarrow \vec{A}+\vec{B}=(6,6)\quad\cdots(3)
\]
Step 2: Add equations (2) and (3):
\[
2\vec{A}+\vec{B}+\vec{C}=(4,2)
\]
Using equation (1), $\vec{B}+\vec{C}=(4,2)$, hence:
\[
2\vec{A}+(4,2)=(4,2)\Rightarrow \vec{A}=(0,0)
\]
Step 3: From equation (3):
\[
\vec{B}=(6,6)
\]
From equation (2):
\[
\vec{C}=(-2,-4)
\]
Step 4: Coordinates of $B(6,6)$ and $C(-2,-4)$ are known.
Slope of $BC$:
\[
m=\frac{6-(-4)}{6-(-2)}=\frac{10}{8}=\frac{5}{4}
\]
Step 5: Equation of line $BC$:
\[
y-6=\frac{5}{4}(x-6)
\]
Simplifying:
\[
4y-24=5x-30
\Rightarrow 5x-4y=6
\]