Given that the mean \(\mu = 2\) and variance \(\sigma^2 = 1\) for a binomial distribution, we know:
\[
\mu = np = 2 \quad \text{and} \quad \sigma^2 = np(1-p) = 1.
\]
From \(\mu = np = 2\), we can express \(p\) in terms of \(n\):
\[
p = \frac{2}{n}.
\]
Substituting into the variance equation:
\[
np(1 - p) = 1 \quad \Rightarrow \quad n \cdot \frac{2}{n} \cdot \left( 1 - \frac{2}{n} \right) = 1.
\]
Simplifying:
\[
2 \left( 1 - \frac{2}{n} \right) = 1 \quad \Rightarrow \quad 2 - \frac{4}{n} = 1 \quad \Rightarrow \quad \frac{4}{n} = 1 \quad \Rightarrow \quad n = 4.
\]
Substitute \(n = 4\) into \(p = \frac{2}{n}\):
\[
p = \frac{2}{4} = \frac{1}{2}.
\]
Now, we need to calculate \(P(X > 1)\). We know that:
\[
P(X > 1) = 1 - P(X \leq 1).
\]
For \(X \sim B(4, \frac{1}{2})\), we can compute \(P(X \leq 1)\) as:
\[
P(X \leq 1) = P(X = 0) + P(X = 1).
\]
Using the binomial probability mass function:
\[
P(X = k) = \binom{n}{k} p^k (1-p)^{n-k}.
\]
Thus,
\[
P(X = 0) = \binom{4}{0} \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^4 = \frac{1}{16}, \quad P(X = 1) = \binom{4}{1} \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^3 = \frac{4}{16}.
\]
Therefore,
\[
P(X \leq 1) = \frac{1}{16} + \frac{4}{16} = \frac{5}{16}.
\]
Finally,
\[
P(X > 1) = 1 - \frac{5}{16} = \frac{11}{16}.
\]
Thus, the probability that \(X\) takes a value greater than 1 is \(\frac{11}{16}\).