For a matrix \(A\) to be skew-symmetric, it must satisfy:
\[
A^T = -A
\]
This means \(a_{ij} = -a_{ji}\) and the diagonal elements must be zero.
Given matrix:
\[
A = \begin{bmatrix}
0 & x + y & 1 \\
3 & z & 2 \\
x - y & -2 & 0
\end{bmatrix}
\]
Step 1: Diagonal elements must be zero:
\[
a_{11} = 0, \quad a_{22} = z, \quad a_{33} = 0
\]
So,
\[
z = 0
\]
Step 2: Off-diagonal elements satisfy:
\[
a_{ij} = -a_{ji}
\]
From element (1,2) and (2,1):
\[
x + y = -3
\]
From element (1,3) and (3,1):
\[
1 = -(x - y) \implies 1 = -x + y \implies x - y = -1
\]
From element (2,3) and (3,2):
\[
2 = -(-2) = 2
\]
(This is consistent.)
Step 3: Solve the system of equations:
\[
x + y = -3 \quad (1)
\]
\[
x - y = -1 \quad (2)
\]
Add (1) and (2):
\[
(x + y) + (x - y) = -3 + (-1) \implies 2x = -4 \implies x = -2
\]
Substitute \(x = -2\) into (1):
\[
-2 + y = -3 \implies y = -1
\]
Thus,
\[
x = -2, \quad y = -1, \quad z = 0
\]