Step 1: Recall equilibrium temperature formula.
\[
T = \left( \frac{S (1-\alpha)}{4 \sigma} \right)^{1/4}
\]
where,
$S = 1360 \, \text{W/m}^2$, $\alpha =$ albedo, $\sigma = 5.67 \times 10^{-8}$.
Step 2: Calculate for $\alpha = 0.3$.
\[
F = \frac{S (1-\alpha)}{4} = \frac{1360 \times 0.7}{4} = \frac{952}{4} = 238 \, \text{W/m}^2
\]
\[
T_1 = \left( \frac{238}{5.67 \times 10^{-8}} \right)^{1/4}
\]
\[
= (4.20 \times 10^9)^{1/4} \approx 254.9 \, K
\]
Step 3: Calculate for $\alpha = 0.4$.
\[
F = \frac{1360 \times 0.6}{4} = \frac{816}{4} = 204 \, \text{W/m}^2
\]
\[
T_2 = \left( \frac{204}{5.67 \times 10^{-8}} \right)^{1/4}
\]
\[
= (3.60 \times 10^9)^{1/4} \approx 244.0 \, K
\]
Step 4: Find decrease.
\[
\Delta T = T_1 - T_2 = 254.9 - 244.0 = 10.9 \, K
\]
Final Answer:
\[
\boxed{10.9 \, K}
\]