Let \(f(x) = \sin x (1 - \cos x)\)
Differentiate:
\[
f'(x) = \cos x (1 - \cos x) + \sin^2 x = \cos x - \cos^2 x + \sin^2 x
= \cos x + (1 - 2\cos^2 x)
= \cos x + 1 - 2 \cos^2 x
\]
So, \(f'(x)>0\) in regions where this expression is positive.
Use sign test in interval: it is positive in \(\left(-\dfrac{\pi}{3}, 0 \right)\cup \left(0, \dfrac{\pi}{3} \right)\)