Step 1: Rewrite ellipse equation by completing squares.
Given:
\[
3x^2+2y^2+6x-8y+5=0
\]
Group terms:
\[
3(x^2+2x)+2(y^2-4y)+5=0
\]
Complete square:
\[
x^2+2x=(x+1)^2-1
\]
\[
y^2-4y=(y-2)^2-4
\]
Substitute:
\[
3[(x+1)^2-1]+2[(y-2)^2-4]+5=0
\]
\[
3(x+1)^2-3+2(y-2)^2-8+5=0
\]
\[
3(x+1)^2+2(y-2)^2-6=0
\]
\[
3(x+1)^2+2(y-2)^2=6
\]
Divide by 6:
\[
\frac{(x+1)^2}{2}+\frac{(y-2)^2}{3}=1
\]
Step 2: Identify axes.
Here:
\[
a^2=3,\quad b^2=2
\]
Major axis along \(y\)-direction.
Step 3: Find foci.
\[
c^2=a^2-b^2=3-2=1 \Rightarrow c=1
\]
Centre is \((-1,2)\).
Since major axis along \(y\), foci are:
\[
(-1,2\pm 1)=(-1,1),(-1,3)
\]
Step 4: Match correct statement.
Statement (C) is correct.
Final Answer:
\[
\boxed{\text{foci are }(-1,1)\text{ and }(-1,3)}
\]