Step 1: Known Information.
Charge on the spherical conductor: \( Q = 12 \, \mu C = 12 \times 10^{-6} \, C \)
Energy stored in the conductor: \( U = 6 \, J \)
The formula for the energy stored in a spherical conductor is:
$$
U = \frac{Q^2}{8 \pi \epsilon_0 R}
$$
where:
\( Q \) is the charge,
\( R \) is the radius of the conductor,
\( \epsilon_0 \) is the permittivity of free space (\( \epsilon_0 = 8.85 \times 10^{-12} \, F/m \)).
Step 2: Rearrange the Formula to Solve for \( R \).
Rearrange the energy formula to solve for \( R \):
$$
R = \frac{Q^2}{8 \pi \epsilon_0 U}
$$
Step 3: Substitute Known Values.
Substitute the given values into the formula:
$$
Q = 12 \times 10^{-6} \, C, \quad \epsilon_0 = 8.85 \times 10^{-12} \, F/m, \quad U = 6 \, J
$$
$$
R = \frac{(12 \times 10^{-6})^2}{8 \pi (8.85 \times 10^{-12})(6)}
$$
Step 4: Simplify the Expression.
First, calculate \( Q^2 \):
$$
Q^2 = (12 \times 10^{-6})^2 = 144 \times 10^{-12} = 1.44 \times 10^{-10} \, C^2
$$
Next, calculate the denominator:
$$
8 \pi \epsilon_0 U = 8 \pi (8.85 \times 10^{-12})(6)
$$
Approximate \( \pi \approx 3.1416 \):
$$
8 \pi = 8 \times 3.1416 \approx 25.1328
$$
$$
8 \pi \epsilon_0 U = 25.1328 \times (8.85 \times 10^{-12}) \times 6
$$
$$
8 \pi \epsilon_0 U = 25.1328 \times 53.1 \times 10^{-12} \approx 1335.7 \times 10^{-12} = 1.3357 \times 10^{-9}
$$
Now, calculate \( R \):
$$
R = \frac{1.44 \times 10^{-10}}{1.3357 \times 10^{-9}}
$$
Simplify:
$$
R \approx \frac{1.44}{1.3357} \times 10^{-1} \approx 1.08 \times 10^{-1} \, m = 10.8 \, cm
$$
Final Answer: \( \boxed{10.8 \, \text{cm}} \)