
Let ABCD be a parallelogram. To show that ABCD is a rectangle, we have to prove that one of its interior angles is 90º.
In ∆ABC and ∆DCB,
AB = DC (Opposite sides of a parallelogram are equal)
BC = BC (Common)
AC = DB (Given)
∠∆ABC ∠∆DCB (By SSS Congruence rule)
⇒ ∠ABC = ∠DCB
It is known that the sum of the measures of angles on the same side of transversal is 180º.
⇒ ∠ABC + ∠DCB = 180º (AB || CD)
⇒ ∠ABC + ∠ABC = 180º
⇒ 2∠ABC = 180º
⇒ ∠ABC = 90º
Since ABCD is a parallelogram and one of its interior angles is 90º, ABCD is a rectangle.
ABCD is a trapezium in which AB || CD and AD = BC (see Fig. 8.14). Show that
(i) ∠A = ∠B
(ii) ∠C = ∠D
(iii) ∆ABC ≅ ∠∆BAD
(iv) diagonal AC = diagonal BD [Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]
