Standard electrode potential for \( \text{Sn}^{4+}/\text{Sn}^{2+} \) couple is +0.15 V and that for the \( \text{Cr}^{3+}/\text{Cr} \) couple is -0.74 V. The two couples in their standard states are connected to make a cell. The cell potential will be:
To calculate the cell potential (\( E^\circ_{\text{cell}} \)), we use the standard electrode potentials of the given redox couples.
Given data:
\( E^\circ_{\text{Sn}^{4+}/\text{Sn}^{2+}} = +0.15V \)
\( E^\circ_{\text{Cr}^{3+}/\text{Cr}} = -0.74V \)
(a.)Write the anode and cathode reactions and the overall cell reaction occurring in a lead storage battery during its use.
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
The system of simultaneous linear equations :
\[ \begin{array}{rcl} x - 2y + 3z &=& 4 \\ 2x + 3y + z &=& 6 \\ 3x + y - 2z &=& 7 \end{array} \]
Calculate the determinant of the matrix: