If the coefficient of x7 in expansion of \((ax- \frac{1}{bx^2})^{13}\) is equal to the coefficient of x-5 in expansion of \((ax + \frac{1}{bx^2})13\), then a4b4 is ______
Given :
Coefficient of x7 is \((ax-\frac{1}{bx})^{13}\)
\(T_{r+1}={^{13}C_r}(ax)^{13-r}(-\frac{1}{bx^2})^r\)
13 - 3r = 7
⇒ r = 2
Coefficient = \({^{13}C_2}\frac{a^{11}}{b^2}\)
Coefficient of x-5 is \((ax+\frac{1}{bx^2})^{13}\)
\(T_{r+1}={^{13}C_r}(ax)^{13-r}(\frac{1}{bx^2})^r\)
13 - 3r = -5
⇒ r = 6
Coefficient = \({^{13}C_6}\frac{a^7}{b^6}\)
Now,
\({^{13}C_2}\frac{a^{11}}{b^2}={^{13}C_6\frac{a^7}{b^6}}\)
\(a^4b^4=\frac{^{13}C_6}{^{13}C_2}=22\)
So, the correct answer is 22.
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is
