If the coefficient of x7 in expansion of \((ax- \frac{1}{bx^2})^{13}\) is equal to the coefficient of x-5 in expansion of \((ax + \frac{1}{bx^2})13\), then a4b4 is ______
Given :
Coefficient of x7 is \((ax-\frac{1}{bx})^{13}\)
\(T_{r+1}={^{13}C_r}(ax)^{13-r}(-\frac{1}{bx^2})^r\)
13 - 3r = 7
⇒ r = 2
Coefficient = \({^{13}C_2}\frac{a^{11}}{b^2}\)
Coefficient of x-5 is \((ax+\frac{1}{bx^2})^{13}\)
\(T_{r+1}={^{13}C_r}(ax)^{13-r}(\frac{1}{bx^2})^r\)
13 - 3r = -5
⇒ r = 6
Coefficient = \({^{13}C_6}\frac{a^7}{b^6}\)
Now,
\({^{13}C_2}\frac{a^{11}}{b^2}={^{13}C_6\frac{a^7}{b^6}}\)
\(a^4b^4=\frac{^{13}C_6}{^{13}C_2}=22\)
So, the correct answer is 22.
If
$ 2^m 3^n 5^k, \text{ where } m, n, k \in \mathbb{N}, \text{ then } m + n + k \text{ is equal to:} $
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
The binomial theorem formula is used in the expansion of any power of a binomial in the form of a series. The binomial theorem formula is