The equation of the first circle is \( S_1: x^2 + y^2 - 2x + 4y + c = 0 \).
Center \( C_1 = (1, -2) \), radius \( r_1 = \sqrt{(-1)^2 + (2)^2 - c} = \sqrt{1 + 4 - c} = \sqrt{5 - c} \).
The equation of the second circle is \( S_2: x^2 + y^2 + 2x - 4y + c = 0 \).
Center \( C_2 = (-1, 2) \), radius \( r_2 = \sqrt{(1)^2 + (-2)^2 - c} = \sqrt{1 + 4 - c} = \sqrt{5 - c} \).
For four common tangents, the circles must be externally separated, which means the distance between their centers must be greater than the sum of their radii.
Distance between centers \( d = \sqrt{(1 - (-1))^2 + (-2 - 2)^2} = \sqrt{(2)^2 + (-4)^2} = \sqrt{4 + 16} = \sqrt{20} = 2\sqrt{5} \).
Sum of radii \( r_1 + r_2 = \sqrt{5 - c} + \sqrt{5 - c} = 2\sqrt{5 - c} \).
For four common tangents, \( d>r_1 + r_2 \):
\( 2\sqrt{5}>2\sqrt{5 - c} \)
\( \sqrt{5}>\sqrt{5 - c} \)
Squaring both sides: \( 5>5 - c \)
\( c>0 \)
Also, for the radii to be real, \( 5 - c>0 \implies c<5 \).
Combining these conditions, we get \( 0<c<5 \).