Step 1: Identify the Formula for Energy Stored in a Capacitor
The energy $U$ stored in a capacitor with capacitance $C$ and charge $Q$ is given by the formula:
\[
U = \frac{Q^2}{2C}
\]
Given: $Q = 300 \, \mu\text{C}$ and $C = 15 \, \mu\text{F}$.
Step 2: Convert Units to SI for Consistency
Convert the given values to SI units for calculation:
Charge:
\[
Q = 300 \, \mu\text{C} = 300 \times 10^{-6} \, \text{C} = 3 \times 10^{-4} \, \text{C}
\]
Capacitance:
\[
C = 15 \, \mu\text{F} = 15 \times 10^{-6} \, \text{F} = 1.5 \times 10^{-5} \, \text{F}
\]
Step 3: Compute the Energy
Substitute the values into the energy formula:
\[
U = \frac{(3 \times 10^{-4})^2}{2 \times (1.5 \times 10^{-5})}
\]
Calculate the numerator:
\[
(3 \times 10^{-4})^2 = 9 \times 10^{-8}
\]
Calculate the denominator:
\[
2 \times (1.5 \times 10^{-5}) = 3 \times 10^{-5}
\]
Thus:
\[
U = \frac{9 \times 10^{-8}}{3 \times 10^{-5}} = 3 \times 10^{-3} \, \text{J}
\]
Convert to millijoules:
\[
3 \times 10^{-3} \, \text{J} = 3 \, \text{mJ}
\]
Step 4: Verify Using an Alternative Formula
The voltage across the capacitor is:
\[
V = \frac{Q}{C} = \frac{3 \times 10^{-4}}{1.5 \times 10^{-5}} = 20 \, \text{V}
\]
Use the alternative energy formula $U = \frac{1}{2} C V^2$:
\[
U = \frac{1}{2} \times (1.5 \times 10^{-5}) \times (20)^2 = \frac{1}{2} \times (1.5 \times 10^{-5}) \times 400 = 3 \times 10^{-3} \, \text{J} = 3 \, \text{mJ}
\]
This confirms the result.
Step 5: Analyze Options
Option (1): 3 mJ. Correct, as it matches our calculated energy.
Option (2): 9 mJ. Incorrect, as the energy is 3 mJ.
Option (3): 6 mJ. Incorrect, as the energy is 3 mJ.
Option (4): 12 mJ. Incorrect, as the energy is 3 mJ.