Given: The vertices of the triangle are \((3,-5)\), \((-7,4)\), and \((10,-k)\).
The centroid \( G(x_g, y_g) \) of a triangle with vertices \((x_1, y_1)\), \((x_2, y_2)\), and \((x_3, y_3)\) is given by:
\[ G = \left( \frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3} \right) \]
Step 1: Apply centroid formula
\[ \left( \frac{3 + (-7) + 10}{3}, \frac{-5 + 4 + (-k)}{3} \right) = (k, -1) \]
Step 2: Solve for \( k \)
\[ \frac{3 - 7 + 10}{3} = k \] \[ \frac{6}{3} = k \] \[ k = 2 \]
Final Answer: 2
In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).