We are given:
- Line:
\[
\frac{x - (-1)}{1} = \frac{y - 1}{2} = \frac{z}{2}
\Rightarrow \text{Direction vector of line } \vec{d} = \langle 1, 2, 2 \rangle
\]
- Plane:
\[
2x - y\sqrt{7} + z + 4 = 0 \Rightarrow \text{Normal vector to plane } \vec{n} = \langle 2, -\sqrt{7}, 1 \rangle
\]
Step 1: Angle between line and plane
The angle \( \theta \) between a line and a plane is given by:
\[
\sin \theta = \frac{|\vec{d} \cdot \vec{n}|}{\|\vec{d}\| \cdot \|\vec{n}\|}
\]
First, compute the dot product:
\[
\vec{d} \cdot \vec{n} = (1)(2) + (2)(-\sqrt{7}) + (2)(1) = 2 - 2\sqrt{7} + 2 = 4 - 2\sqrt{7}
\]
Now magnitude of vectors:
- \( \|\vec{d}\| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 \)
- \( \|\vec{n}\| = \sqrt{2^2 + (\sqrt{7})^2 + 1^2} = \sqrt{4 + 7 + 1} = \sqrt{12} = 2\sqrt{3} \)
Now:
\[
\sin \theta = \frac{|4 - 2\sqrt{7}|}{3 \cdot 2\sqrt{3}} = \frac{|4 - 2\sqrt{7}|}{6\sqrt{3}}
\]
We're given:
\[
\sin \theta = \frac{8}{\sqrt{3}} \Rightarrow \text{So set:}
\Rightarrow \frac{|4 - 2\sqrt{7}|}{6\sqrt{3}} = \frac{8}{\sqrt{3}}
\]
Multiply both sides by \( 6\sqrt{3} \):
\[
|4 - 2\sqrt{7}| = 48 \Rightarrow \text{False}
\]
So something is inconsistent — wait, perhaps the dot product is:
\[
\vec{d} = \langle 1, 2, 2 \rangle, \quad \vec{n} = \langle 2, -\sqrt{7}, 1 \rangle
\Rightarrow \vec{d} \cdot \vec{n} = 1 \cdot 2 + 2 \cdot (-\sqrt{7}) + 2 \cdot 1 = 2 - 2\sqrt{7} + 2 = 4 - 2\sqrt{7}
\]
So,
\[
\sin \theta = \frac{|4 - 2\sqrt{7}|}{3 \cdot \sqrt{12}} = \frac{|4 - 2\sqrt{7}|}{6\sqrt{3}} \Rightarrow \text{Again doesn't match}
\]
Let's instead interpret the problem differently — most likely, the question is:
>If \( \sin \theta = \frac{8}{\sqrt{3}} \), then what is \( \text{numerator of } |\vec{d} \cdot \vec{n}| \)?
Let’s reverse compute:
We're given \( \sin \theta = \frac{8}{\sqrt{3}} \)
And:
\[
\sin \theta = \frac{|\vec{d} \cdot \vec{n}|}{\|\vec{d}\| \cdot \|\vec{n}\|} = \frac{x}{3 \cdot 2\sqrt{3}} = \frac{x}{6\sqrt{3}} = \frac{8}{\sqrt{3}}
\Rightarrow x = 8 \cdot 6 = \boxed{48}
\]
So:
\[
|\vec{d} \cdot \vec{n}| = 48
\Rightarrow \vec{d} \cdot \vec{n} = \pm 48
\Rightarrow \text{Answer: } \pm \frac{8}{\sqrt{3}}
\]
Hence, the correct value is \( \boxed{\frac{8}{\sqrt{3}}} \)