$T_{21} = T_{20+1} = \,^{44}c_{20}x^{20}$
$T_{22} = T_{21+1} = \,^{44}c_{21}\left(-x\right)^{21} = - \,^{44}c_{21}x^{21}$
$\therefore \,^{44}c_{20}x^{20} = - \,^{44}c_{21}x^{21}$
$\therefore x = \frac{^{44}c_{20}}{^{44}c_{21}} = \frac{44\,!}{24\,!\,20\,!} \times \frac{21\,!\,3!}{44\,!}$
$= \frac{21\cdot20\,!\,23\,!}{20\,!\,24\cdot23\,!} = -\frac{21}{24} = -\frac{7}{8}$