>
Exams
>
Mathematics
>
Trigonometry
>
if tan theta frac 1 tan theta 2 find the value of
Question:
If \( \tan \theta + \frac{1}{\tan \theta} = 2 \), find the value of \( \tan^2 \theta + \frac{1}{\tan^2 \theta} \).
Show Hint
If \( x + \frac{1}{x} = 2 \), then \( x^n + \frac{1}{x^n} \) is always 2 for any natural number \( n \).
CBSE Class X - 2026
CBSE Class X
Updated On:
Feb 21, 2026
Hide Solution
Verified By Collegedunia
Solution and Explanation
Step 1: Understanding the Concept:
We use the algebraic identity \( (a + b)^2 = a^2 + b^2 + 2ab \).
Step 2: Detailed Explanation:
Given: \( \tan \theta + \frac{1}{\tan \theta} = 2 \).
Squaring both sides:
\[ \left( \tan \theta + \frac{1}{\tan \theta} \right)^2 = (2)^2 \]
\[ \tan^2 \theta + \left( \frac{1}{\tan \theta} \right)^2 + 2(\tan \theta) \left( \frac{1}{\tan \theta} \right) = 4 \]
Since \( \tan \theta \times \frac{1}{\tan \theta} = 1 \):
\[ \tan^2 \theta + \frac{1}{\tan^2 \theta} + 2 = 4 \]
\[ \tan^2 \theta + \frac{1}{\tan^2 \theta} = 4 - 2 = 2 \]
Step 3: Final Answer:
The value is 2.
Download Solution in PDF
Was this answer helpful?
0
1
Top Questions on Trigonometry
Prove that : \( \frac{\sec^3 \theta}{\sec^2 \theta - 1} + \frac{\text{cosec}^3 \theta}{\text{cosec}^2 \theta - 1} = \sec \theta \cdot \text{cosec} \theta (\sec \theta + \text{cosec} \theta) \)
CBSE Class X - 2026
Mathematics
Trigonometry
View Solution
Prove that: \(\frac{\sec^3 \theta}{\sec^2 \theta - 1} + \frac{\csc^3 \theta}{\csc^2 \theta - 1} = \sec \theta \cdot \csc \theta (\sec \theta + \csc \theta)\)
CBSE Class X - 2026
Mathematics
Trigonometry
View Solution
If \( \frac{\sec \alpha}{\text{cosec} \beta} = p \) and \( \frac{\tan \alpha}{\text{cosec} \beta} = q \), then prove that \( (p^2 - q^2) \sec^2 \alpha = p^2 \).
CBSE Class X - 2026
Mathematics
Trigonometry
View Solution
Which of the following statements is not true?
CBSE Class X - 2026
Mathematics
Trigonometry
View Solution
If \(\sqrt{3} \sin A = \cos A\), then the measure of \(A\) is :
CBSE Class X - 2026
Mathematics
Trigonometry
View Solution
View More Questions
Questions Asked in CBSE X exam
The graph of \(y = f(x)\) is given. The number of zeroes of \(f(x)\) is :
CBSE Class X - 2026
Polynomials
View Solution
In the given figure, PA and PB are tangents to a circle centred at O. If \( \angle OAB = 15^\circ \), then \( \angle APB \) equals :
CBSE Class X - 2026
Circles
View Solution
The natural number 1 is :
CBSE Class X - 2026
Number Systems
View Solution
If \( \alpha, \beta \) are the zeroes of the quadratic polynomial \( px^2 + qx + r \), then find the value of \( \alpha^3\beta + \beta^3\alpha \).
CBSE Class X - 2026
Polynomials
View Solution
If \( \alpha \) and \( \beta \) are two zeroes of a polynomial \( f(x) = px^2 - 2x + 3p \) and \( \alpha + \beta = \alpha\beta \), then value of p is :
CBSE Class X - 2026
Polynomials
View Solution
View More Questions