Step 1: Simplify the given expression.
\[
\tan\beta
=2\sin\alpha\sin\gamma\cdot\csc(\alpha+\gamma)
=\frac{2\sin\alpha\sin\gamma}{\sin(\alpha+\gamma)}
\]
Using the identity:
\[
\sin(\alpha+\gamma)=\sin\alpha\cos\gamma+\cos\alpha\sin\gamma
\]
Step 2: Express in terms of cotangents.
Divide numerator and denominator by \(\sin\alpha\sin\gamma\):
\[
\tan\beta
=\frac{2}{\cot\alpha+\cot\gamma}
\]
Step 3: Take reciprocal to obtain \(\cot\beta\).
\[
\cot\beta=\frac{\cot\alpha+\cot\gamma}{2}
\]
Step 4: Interpret the result.
The above relation implies:
\[
2\cot\beta=\cot\alpha+\cot\gamma
\]
Hence, \(\cot\beta\) is the arithmetic mean of \(\cot\alpha\) and \(\cot\gamma\).
Therefore, \(\cot\alpha,\;\cot\beta,\;\cot\gamma\) are in arithmetic progression.
Hence, the correct answer is
\[
\boxed{\text{A.P.}}
\]