When solving equations involving inverse trigonometric functions, it's often helpful to apply identities like \( \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \) to simplify the expression. Additionally, keep in mind that we often need to manipulate the argument inside the inverse tangent or cotangent functions and set the argument equal to zero to solve for the variable. In this problem, simplifying the expressions step by step leads to the solution for \(x\).
Given the equation:
\[\tan^{-1} \left( \frac{2}{3x + 1} \right) = \cot^{-1} \left( \frac{3}{3x + 1} \right).\]
We know that \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \). Thus, we can rewrite the equation as:
\[\tan^{-1} \left( \frac{2}{3x + 1} \right) = \frac{\pi}{2} - \tan^{-1} \left( \frac{3}{3x + 1} \right).\]
Now, use the identity \( \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \) for \( a = \frac{2}{3x + 1} \) and \( b = \frac{3}{3x + 1} \):
\[ \tan^{-1} \left( \frac{2}{3x + 1} \right) + \tan^{-1} \left( \frac{3}{3x + 1} \right) = \tan^{-1} \left( \frac{\frac{2}{3x+1} + \frac{3}{3x+1}}{1 - \frac{2}{3x+1} \cdot \frac{3}{3x+1}} \right). \]
Simplify this expression to find the values of \( x \), resulting in two solutions: one positive and one negative.
Thus, the correct answer is: (2) There is one positive and one negative real value of \( x \).
We are given the equation:
\[ \tan^{-1} \left( \frac{2}{3x + 1} \right) = \cot^{-1} \left( \frac{3}{3x + 1} \right). \]Step 1: Use the identity \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \) to rewrite the equation:
\[ \tan^{-1} \left( \frac{2}{3x + 1} \right) = \frac{\pi}{2} - \tan^{-1} \left( \frac{3}{3x + 1} \right). \]Step 2: Apply the identity \( \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \), where \( a = \frac{2}{3x + 1} \) and \( b = \frac{3}{3x + 1} \):
\[ \tan^{-1} \left( \frac{2}{3x + 1} \right) + \tan^{-1} \left( \frac{3}{3x + 1} \right) = \tan^{-1} \left( \frac{\frac{2}{3x+1} + \frac{3}{3x+1}}{1 - \frac{2}{3x+1} \cdot \frac{3}{3x+1}} \right). \]Step 3: Simplify the expression:
Simplifying the numerator: \[ \frac{2}{3x + 1} + \frac{3}{3x + 1} = \frac{5}{3x + 1}. \] Simplifying the denominator: \[ 1 - \frac{2}{3x + 1} \cdot \frac{3}{3x + 1} = 1 - \frac{6}{(3x + 1)^2} = \frac{(3x + 1)^2 - 6}{(3x + 1)^2} = \frac{9x^2 + 6x - 5}{(3x + 1)^2}. \] Therefore, we now have: \[ \tan^{-1} \left( \frac{\frac{5}{3x + 1}}{\frac{9x^2 + 6x - 5}{(3x + 1)^2}} \right) = \tan^{-1} \left( \frac{5(3x + 1)}{9x^2 + 6x - 5} \right). \]Step 4: Set the argument of the tangent inverse equal to zero:
To solve for \(x\), we set the argument of the tangent inverse to zero: \[ \frac{5(3x + 1)}{9x^2 + 6x - 5} = 0. \] This simplifies to: \[ 5(3x + 1) = 0. \] Solving for \(x\): \[ 3x + 1 = 0 \quad \Rightarrow \quad x = -\frac{1}{3}. \]Step 5: Conclusion:
Thus, the correct answer is:\(\boxed{(2) \text{There is one positive and one negative real value of } x.}\)