Given the equation:
\[\tan^{-1} \left( \frac{2}{3x + 1} \right) = \cot^{-1} \left( \frac{3}{3x + 1} \right).\]
We know that \( \cot^{-1} y = \frac{\pi}{2} - \tan^{-1} y \). Thus, we can rewrite the equation as:
\[\tan^{-1} \left( \frac{2}{3x + 1} \right) = \frac{\pi}{2} - \tan^{-1} \left( \frac{3}{3x + 1} \right).\]
Now, use the identity \( \tan^{-1} a + \tan^{-1} b = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \) for \( a = \frac{2}{3x + 1} \) and \( b = \frac{3}{3x + 1} \):
\[ \tan^{-1} \left( \frac{2}{3x + 1} \right) + \tan^{-1} \left( \frac{3}{3x + 1} \right) = \tan^{-1} \left( \frac{\frac{2}{3x+1} + \frac{3}{3x+1}}{1 - \frac{2}{3x+1} \cdot \frac{3}{3x+1}} \right). \]
Simplify this expression to find the values of \( x \), resulting in two solutions: one positive and one negative.
Thus, the correct answer is: (2) There is one positive and one negative real value of \( x \).