Step 1: Express \(a_r\) using partial sums.
Given:
\[
S_n = \sum_{r=1}^{n} a_r = \frac{n(n+1)(n+2)}{6}
\]
Then,
\[
a_r = S_r - S_{r-1}
\]
Step 2: Find \(a_r\).
\[
S_r = \frac{r(r+1)(r+2)}{6},
\quad
S_{r-1} = \frac{(r-1)r(r+1)}{6}
\]
\[
a_r = \frac{r(r+1)}{6}\big[(r+2)-(r-1)\big]
\]
\[
a_r = \frac{r(r+1)}{6}\times 3
= \frac{r(r+1)}{2}
\]
Step 3: Write the required sum.
\[
\sum_{r=1}^{n}\frac{1}{a_r}
= \sum_{r=1}^{n}\frac{2}{r(r+1)}
\]
Step 4: Use partial fractions.
\[
\frac{2}{r(r+1)} = 2\left(\frac{1}{r}-\frac{1}{r+1}\right)
\]
\[
\sum_{r=1}^{n}\frac{1}{a_r}
= 2\sum_{r=1}^{n}\left(\frac{1}{r}-\frac{1}{r+1}\right)
\]
Step 5: Evaluate the telescoping sum.
\[
=2\left(1-\frac{1}{n+1}\right)
\]
Step 6: Take the limit as \(n\to\infty\).
\[
\lim_{n\to\infty}2\left(1-\frac{1}{n+1}\right)=2
\]
Hence,
\[
\boxed{2}
\]