Question:

If $$ \sin x \sqrt{\cos y} - \cos y \sqrt{\sin x} = 0, $$ then find $$ \frac{dy}{dx}. $$

Show Hint

Use implicit differentiation carefully on composite functions.
Updated On: Jun 4, 2025
  • \( \tan x \)
  • 1
  • -1
  • \( -\cot x \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Differentiate implicitly w.r.t \( x \): \[ \frac{d}{dx} \left( \sin x \sqrt{\cos y} \right) - \frac{d}{dx} \left( \cos y \sqrt{\sin x} \right) = 0 \] Calculate derivatives: \[ \cos x \sqrt{\cos y} + \sin x \cdot \frac{1}{2} (\cos y)^{-1/2} (-\sin y) \frac{dy}{dx} - (-\sin y) \sqrt{\sin x} \frac{dy}{dx} - \cos y \cdot \frac{1}{2} (\sin x)^{-1/2} \cos x = 0 \] Simplify and solve for \( \frac{dy}{dx} \), result is: \[ \frac{dy}{dx} = -1 \]
Was this answer helpful?
0
0