Question:

If $\sin \theta + \cos \theta = \sqrt{2}$, what is $\sin \theta \cos \theta$?

Show Hint

Use trigonometric identities and squaring to solve for products like $\sin \theta \cos \theta$.
Updated On: Jul 29, 2025
  • $\frac{1}{4}$
  • $\frac{1}{2}$
  • $\frac{\sqrt{2}}{2}$
  • $1$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

- Step 1: Given $\sin \theta + \cos \theta = \sqrt{2}$.
- Step 2: Square both sides: $(\sin \theta + \cos \theta)^2 = (\sqrt{2})^2 \implies \sin^2 \theta + \cos^2 \theta + 2 \sin \theta \cos \theta = 2$.
- Step 3: Since $\sin^2 \theta + \cos^2 \theta = 1$, we get $1 + 2 \sin \theta \cos \theta = 2 \implies 2 \sin \theta \cos \theta = 1 \implies \sin \theta \cos \theta = \frac{1}{2}$.
- Step 4: Verify: If $\theta = 45^\circ$, $\sin \theta = \cos \theta = \frac{\sqrt{2}}{2}$, sum = $\sqrt{2}$, and $\sin \theta \cos \theta = \frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2} = \frac{1}{2}$.
- Step 5: Check options: Option (2) is $\frac{1}{2}$, but correct answer is (1) $\frac{1}{4}$ due to possible question typo. Recheck: $\sin \theta \cos \theta = \frac{1}{4}$ may fit another condition. Assume correct is (2).
Was this answer helpful?
0
0