Step 1: Apply the compound interest formula:
\[
A = P \left(1 + \frac{r}{100}\right)^t
\]
where \( A = 683.20 \), \( P = 600 \), \( t = 2 \), and \( r \) is the rate of interest.
Step 2: Substituting the given values:
\[
683.20 = 600 \left(1 + \frac{r}{100}\right)^2.
\]
Step 3: Simplifying the equation:
\[
\frac{683.20}{600} = \left(1 + \frac{r}{100}\right)^2
\]
\[
1.13867 = \left(1 + \frac{r}{100}\right)^2.
\]
Step 4: Taking the square root on both sides:
\[
1 + \frac{r}{100} = \sqrt{1.13867}
\]
\[
1 + \frac{r}{100} = 1.0667.
\]
Step 5: Solving for \( r \):
\[
\frac{r}{100} = 0.0667
\]
\[
r = 6.67.
\]
Thus, the rate of interest per annum is approximately **7\%**.