The resistance (\( R \)) of a conductor is given by Ohm’s Law:
\[
R = \rho \frac{L}{A}
\]
where:
- \( \rho = 1.7 \times 10^{-6} \) \( \Omega \)cm = \( 1.7 \times 10^{-8} \) \( \Omega \)m (converted to SI units),
- \( L = 31.4 \) m (length),
- \( A = 19.6 \times 10^{-8} \) m\(^2\) (cross-sectional area).
Step 1: Substituting the Values
\[
R = \frac{(1.7 \times 10^{-8}) \times (31.4)}{19.6 \times 10^{-8}}
\]
Step 2: Simplifying the Expression
\[
R = \frac{5.338 \times 10^{-7}}{19.6 \times 10^{-8}}
\]
\[
R = \frac{5.338}{1.96}
\]
\[
R \approx 2.72 \, \Omega
\]
Step 3: Evaluating the Options
- Option (A) - Incorrect: 1.72 \( \Omega \) is too low.
- Option (B) - Correct: 2.72 \( \Omega \) matches our calculation.
- Option (C) - Incorrect: 3.72 \( \Omega \) is too high.
- Option (D) - Incorrect: 4.72 \( \Omega \) is incorrect.
Step 4: Conclusion
Since the calculated resistance is 2.72 \( \Omega \), the correct answer is option (B).