Step 1: Interpret relation.
\[ aRb \iff |a-b|>0 \]
This means:
\[ aRb \iff a\neq b \]
Step 2: Check reflexive property.
Reflexive means \(aRa\) for all \(a\).
But:
\[ |a-a|=0 \not> 0 \]
So it is not reflexive.
Step 3: Check symmetric property.
If \(aRb\), then \(a\neq b\).
Then \(b\neq a\Rightarrow |b-a|>0\Rightarrow bRa\).
So it is symmetric.
Step 4: Check transitive property.
If \(aRb\) and \(bRc\), then \(a\neq b\) and \(b\neq c\).
But it is possible that \(a=c\). Example: \(a=1,b=2,c=1\).
Then \(a=c\Rightarrow |a-c|=0\), so \(aRc\) is false.
So it is not transitive.
Final Answer:
\[ \boxed{\text{Symmetric}} \]