The equation of the circle is \( S: x^2 + y^2 - 2x - 2y + 1 = 0 \).
Center \( C(1, 1) \), radius \( r = \sqrt{(-1)^2 + (-1)^2 - 1} = \sqrt{1 + 1 - 1} = 1 \).
Let \( Q(x_1, y_1) \) be the inverse point of \( P(2, 3) \) with respect to the circle.
The points \( C, Q, P \) are collinear and \( CP \cdot CQ = r^2 \).
Vector \( \vec{CP} = (2 - 1, 3 - 1) = (1, 2) \).
Vector \( \vec{CQ} = (x_1 - 1, y_1 - 1) \).
Since \( C, Q, P \) are collinear, \( \vec{CQ} = \lambda \vec{CP} \) for some scalar \( \lambda \).
\( (x_1 - 1, y_1 - 1) = \lambda (1, 2) = (\lambda, 2\lambda) \)
\( x_1 = 1 + \lambda, y_1 = 1 + 2\lambda \).
\( CP = \sqrt{1^2 + 2^2} = \sqrt{5} \).
\( CQ = \sqrt{\lambda^2 + (2\lambda)^2} = \sqrt{5\lambda^2} = |\lambda|\sqrt{5} \).
\( CP \cdot CQ = r^2 \implies \sqrt{5} \cdot |\lambda|\sqrt{5} = 1^2 \implies 5|\lambda| = 1 \implies |\lambda| = \frac{1}{5} \).
Since \( Q \) lies on the segment \( CP \) extended, \( \lambda \) has the same sign.
Vector \( \vec{CP} \) is from \( C \) to \( P \).
\( Q \) is further from \( C \) than \( P \).
So \( \lambda \) should be such that \( CQ>CP \).
The inverse point lies on the line \( CP \) such that \( CQ = r^2 / CP = 1 / \sqrt{5} \).
\( \vec{CQ} = \frac{1}{5} \vec{CP} = (\frac{1}{5}, \frac{2}{5}) \).
\( x_1 - 1 = \frac{1}{5} \implies x_1 = \frac{6}{5} \).
\( y_1 - 1 = \frac{2}{5} \implies y_1 = \frac{7}{5} \).
So, \( Q = (\frac{6}{5}, \frac{7}{5}) \).
The circle with \( PQ \) as diameter has center as the midpoint of \( PQ \) and radius \( \frac{1}{2} PQ \).
Midpoint \( = \left( \frac{2 + 6/5}{2}, \frac{3 + 7/5}{2} \right) = \left( \frac{16/5}{2}, \frac{22/5}{2} \right) = \left( \frac{8}{5}, \frac{11}{5} \right) \).
Radius \( = \frac{1}{2} \sqrt{(2 - 6/5)^2 + (3 - 7/5)^2} = \frac{1}{2} \sqrt{(\frac{4}{5})^2 + (\frac{8}{5})^2} = \frac{1}{2} \sqrt{\frac{16 + 64}{25}} = \frac{1}{2} \frac{\sqrt{80}}{5} = \frac{1}{2} \frac{4\sqrt{5}}{5} = \frac{2\sqrt{5}}{5} \).
Equation: \( (x - \frac{8}{5})^2 + (y - \frac{11}{5})^2 = (\frac{2\sqrt{5}}{5})^2 = \frac{20}{25} = \frac{4}{5} \).
\( x^2 - \frac{16}{5}x + \frac{64}{25} + y^2 - \frac{22}{5}y + \frac{121}{25} = \frac{4}{5} = \frac{20}{25} \).
\( x^2 + y^2 - \frac{16}{5}x - \frac{22}{5}y + \frac{185 - 20}{25} = 0 \)
\( x^2 + y^2 - \frac{16}{5}x - \frac{22}{5}y + \frac{165}{25} = 0 \)
\( 5x^2 + 5y^2 - 16x - 22y + 33 = 0 \).