Given:
\( 2pq - 20 = 52 - 2pq \)
\( \Rightarrow 2pq + 2pq = 52 + 20 \)
\( \Rightarrow 4pq = 72 \)
\( \Rightarrow pq = 18 \) ...... (1)
Now consider:
\( p^2 + q^2 - 29 = 2pq - 20 \)
\( \Rightarrow p^2 + q^2 - 2pq = 9 \)
\( \Rightarrow (p - q)^2 = 9 \)
\( \Rightarrow p - q = \pm 3 \)
From (1): \( pq = 18 \)
Again, using the same identity:
\( p^2 + q^2 = 2pq + 9 \)
\( \Rightarrow p^2 + q^2 = 2(18) + 9 = 36 + 9 = 45 \)
Now, using the identity:
\( p^3 - q^3 = (p - q)(p^2 + pq + q^2) \)
From above:
\( p^2 + q^2 = 45 \), and \( pq = 18 \)
So,
\( p^2 + pq + q^2 = 45 + 18 = 63 \)
Case 1: \( p - q = 3 \)
\( p^3 - q^3 = 3 \cdot 63 = 189 \)
Case 2: \( p - q = -3 \)
\( p^3 - q^3 = (-3) \cdot 63 = -189 \)
Difference between the two values:
\( 189 - (-189) = 189 + 189 = \mathbf{378} \)
Final Answer: (B) 378
When $10^{100}$ is divided by 7, the remainder is ?