To evaluate the determinant, expand and simplify:
The determinant is:
\[ \Delta = \begin{vmatrix} p & p^2 & 1 + p^3 \\ q & q^2 & 1 + q^3 \\ r & r^2 & 1 + r^3 \end{vmatrix}. \]
Using the property of determinants, subtract the first column from the second and the third column from the first, simplifying the matrix to:
\[ \Delta = \begin{vmatrix} p & p(p - 1) & p^3(p - 1) \\ q & q(q - 1) & q^3(q - 1) \\ r & r(r - 1) & r^3(r - 1) \end{vmatrix}. \]
Factor out \(p - 1\), \(q - 1\), and \(r - 1\) from the columns:
\[ \Delta = (p - 1)(q - 1)(r - 1) \begin{vmatrix} p & p^2 & 1 \\ q & q^2 & 1 \\ r & r^2 & 1 \end{vmatrix}. \]
The remaining determinant simplifies using standard properties of symmetric determinants:
\[ \begin{vmatrix} p & p^2 & 1 \\ q & q^2 & 1 \\ r & r^2 & 1 \end{vmatrix} = (q - p)(r - p)(r - q). \]
Thus, the overall value of the determinant becomes:
\[ \Delta = (1 + pqr)(q - p)(r - p)(r - q). \]
Hence, the correct answer is \((1 + pqr)(q - p)(r - p)(r - q)\).
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |