To evaluate the determinant, expand and simplify:
The determinant is:
\[ \Delta = \begin{vmatrix} p & p^2 & 1 + p^3 \\ q & q^2 & 1 + q^3 \\ r & r^2 & 1 + r^3 \end{vmatrix}. \]
Using the property of determinants, subtract the first column from the second and the third column from the first, simplifying the matrix to:
\[ \Delta = \begin{vmatrix} p & p(p - 1) & p^3(p - 1) \\ q & q(q - 1) & q^3(q - 1) \\ r & r(r - 1) & r^3(r - 1) \end{vmatrix}. \]
Factor out \(p - 1\), \(q - 1\), and \(r - 1\) from the columns:
\[ \Delta = (p - 1)(q - 1)(r - 1) \begin{vmatrix} p & p^2 & 1 \\ q & q^2 & 1 \\ r & r^2 & 1 \end{vmatrix}. \]
The remaining determinant simplifies using standard properties of symmetric determinants:
\[ \begin{vmatrix} p & p^2 & 1 \\ q & q^2 & 1 \\ r & r^2 & 1 \end{vmatrix} = (q - p)(r - p)(r - q). \]
Thus, the overall value of the determinant becomes:
\[ \Delta = (1 + pqr)(q - p)(r - p)(r - q). \]
Hence, the correct answer is \((1 + pqr)(q - p)(r - p)(r - q)\).
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $ A $ be a $ 3 \times 3 $ matrix such that $ | \text{adj} (\text{adj} A) | = 81.
$ If $ S = \left\{ n \in \mathbb{Z}: \left| \text{adj} (\text{adj} A) \right|^{\frac{(n - 1)^2}{2}} = |A|^{(3n^2 - 5n - 4)} \right\}, $ then the value of $ \sum_{n \in S} |A| (n^2 + n) $ is:
Let \( A = \begin{bmatrix} \alpha & -1 \\ 6 & \beta \end{bmatrix} , \ \alpha > 0 \), such that \( \det(A) = 0 \) and \( \alpha + \beta = 1. \) If \( I \) denotes the \( 2 \times 2 \) identity matrix, then the matrix \( (I + A)^8 \) is:
Identify the part of the sentence that contains a grammatical error:
Each of the boys have submitted their assignment on time.
Rearrange the following parts to form a meaningful and grammatically correct sentence:
P. a healthy diet and regular exercise
Q. are important habits
R. that help maintain good physical and mental health
S. especially in today's busy world