Given that \( P^2 - 3P - 7I = 0 \), we can rearrange this as:
\[ P^2 = 3P + 7I. \]
Multiplying both sides by \( P^{-1} \), we get:
\[ P = 3I + 7P^{-1}. \]
Rearranging for \( P^{-1} \):
\[ P^{-1} = \frac{1}{7}(P - 3I). \]
Substituting \( P = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} \) and \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \):
\[ P - 3I = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} - 3 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}. \]
Therefore:
\[ P^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}. \]
List-I | List-II |
(A) Absolute maximum value | (I) 3 |
(B) Absolute minimum value | (II) 0 |
(C) Point of maxima | (III) -5 |
(D) Point of minima | (IV) 4 |