To solve for the inverse \(P^{-1}\) of the matrix \(P = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix}\), given that it satisfies the equation \(P^2 - 3P - 7I = 0\), where \(I\) is the identity matrix of order 2, follow these steps:
1. Understand that \(P^2 - 3P - 7I = 0\) is equivalent to the matrix polynomial \(P^2 = 3P + 7I\).
2. Calculate \((P-\lambda I)\) where \(\lambda\) represents the eigenvalues of \(P\). The characteristic equation is \(\det(P-\lambda I) = 0\).
3. Find the determinant: \(\det(P-\lambda I) = \det \begin{bmatrix} 5-\lambda & 3 \\ -1 & -2-\lambda \end{bmatrix} = (5-\lambda)(-2-\lambda) - (-3)(-1)\).
4. Simplify: \((-2-\lambda)(5-\lambda) - 3 = \lambda^2 -3\lambda -7 = 0\), indicating eigenvalues satisfying the identity polynomial equation.
5. The inverse relation from the polynomial is \(P^{-1} = -\frac{1}{7}(P-3I)\).
6. Calculate \(P-3I = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}\).
7. Now use the inverse calculation: \(P^{-1} = \frac{1}{7}\begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}\).
Thus, the correct answer is \(\frac{1}{7} \begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}\).
Given that \( P^2 - 3P - 7I = 0 \), we can rearrange this as:
\[ P^2 = 3P + 7I. \]
Multiplying both sides by \( P^{-1} \), we get:
\[ P = 3I + 7P^{-1}. \]
Rearranging for \( P^{-1} \):
\[ P^{-1} = \frac{1}{7}(P - 3I). \]
Substituting \( P = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} \) and \( I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \):
\[ P - 3I = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} - 3 \times \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}. \]
Therefore:
\[ P^{-1} = \frac{1}{7} \begin{bmatrix} 2 & 3 \\ -1 & -5 \end{bmatrix}. \]