Step 1: Let's simplify the antecedent: $(P \Rightarrow Q) \wedge \neg Q$.
$(P \Rightarrow Q)$ is equivalent to $(\neg P \vee Q)$.
So, $(\neg P \vee Q) \wedge \neg Q \equiv (\neg P \wedge \neg Q) \vee (Q \wedge \neg Q) \equiv (\neg P \wedge \neg Q) \vee F \equiv (\neg P \wedge \neg Q)$.
Step 2: Now check option (C): $(\neg P \wedge \neg Q) \Rightarrow \neg P$.
Since $(A \wedge B) \Rightarrow A$ is always a tautology, $(\neg P \wedge \neg Q) \Rightarrow \neg P$ is a tautology.