Question:

If P and Q are two statements, then which of the following compound statement is a tautology ?

Show Hint

This is the rule of {Modus Tollens}: If $P$ implies $Q$, and $Q$ is false, then $P$ must be false.
Updated On: Jan 12, 2026
  • ((P$\Rightarrow$Q) $\wedge$ $\neg$Q) $\Rightarrow$ P
  • ((P$\Rightarrow$Q) $\wedge$ $\neg$Q) $\Rightarrow$ Q
  • ((P$\Rightarrow$Q) $\wedge$ $\neg$Q) $\Rightarrow$ $\neg$P
  • ((P$\Rightarrow$Q) $\wedge$ $\neg$Q) $\Rightarrow$ (P $\wedge$ Q)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Step 1: Let's simplify the antecedent: $(P \Rightarrow Q) \wedge \neg Q$. $(P \Rightarrow Q)$ is equivalent to $(\neg P \vee Q)$. So, $(\neg P \vee Q) \wedge \neg Q \equiv (\neg P \wedge \neg Q) \vee (Q \wedge \neg Q) \equiv (\neg P \wedge \neg Q) \vee F \equiv (\neg P \wedge \neg Q)$.
Step 2: Now check option (C): $(\neg P \wedge \neg Q) \Rightarrow \neg P$. Since $(A \wedge B) \Rightarrow A$ is always a tautology, $(\neg P \wedge \neg Q) \Rightarrow \neg P$ is a tautology.
Was this answer helpful?
0
0