Question:

If \(P(A) = \frac{4}{15}\),then \(P(\overline{A})=\)

Updated On: Apr 17, 2025
  • \(\frac{13}{15}\)
  • \(\frac{11}{15}\)
  • \(\frac{19}{15}\)
  • \(\frac{14}{15}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

To solve the problem, we need to find the probability of the complement of event \( A \), denoted as \( P(\overline{A}) \), given that \( P(A) = \frac{4}{15} \).

1. Understanding the Complement Rule:
In probability, the sum of the probabilities of an event and its complement is always 1. That is:

\( P(A) + P(\overline{A}) = 1 \)

2. Substituting the Given Value:
Given \( P(A) = \frac{4}{15} \), we substitute into the equation:

\( \frac{4}{15} + P(\overline{A}) = 1 \)

3. Solving for \( P(\overline{A}) \):
\( P(\overline{A}) = 1 - \frac{4}{15} = \frac{15}{15} - \frac{4}{15} = \frac{11}{15} \)

Final Answer:
The value of \( P(\overline{A}) \) is \({\frac{11}{15}} \).

Was this answer helpful?
0
0

Top Questions on Probability

View More Questions