To solve the problem of finding \(P\left(\frac{B}{A}\right)+P\left(\frac{A}{B}\right)\), we use the given probabilities: \(P(A)=\frac{3}{10}\), \(P(B)=\frac{2}{5}\), and \(P(A\cup B)=\frac{3}{5}\). The formula for the union of two events is:
\[P(A\cup B)=P(A)+P(B)-P(A\cap B)\]
Substituting the known values:
\[\frac{3}{5}=\frac{3}{10}+\frac{2}{5}-P(A\cap B)\]
Solve for \(P(A\cap B)\):
\[P(A\cap B)=\frac{3}{10}+\frac{4}{10}-\frac{6}{10}=\frac{1}{10}\]
Next, determine the conditional probabilities:
\[P\left(\frac{B}{A}\right)=\frac{P(A\cap B)}{P(A)}=\frac{\frac{1}{10}}{\frac{3}{10}}=\frac{1}{3}\]
\[P\left(\frac{A}{B}\right)=\frac{P(A\cap B)}{P(B)}=\frac{\frac{1}{10}}{\frac{2}{5}}=\frac{1}{4}\]
Finally, add these probabilities together:
\[P\left(\frac{B}{A}\right)+P\left(\frac{A}{B}\right)=\frac{1}{3}+\frac{1}{4}=\frac{4}{12}+\frac{3}{12}=\frac{7}{12}\]
Thus, the result is \(\frac{7}{12}\), which is the correct answer.